Original Article.

DENGUE HEMORRHAGIC FEVER OUTBREAK IN PORT SUDAN

Amal Malik¹, Kenneth Earhart², Emad Mohareb², Magdi Saad², Mubarak Saeed³, Ali Ageep⁴, Samuel Yingst², Marshall Monteville² and Atef Soliman^{2*}

ABSTRACT

Dengue fever (DF)/dengue hemorrhagic fever (DHF) has emerged as a global public health problem with countries in Asia and the Pacific sharing more than 70% of the disease burden. A total of 312 cases admitted to Pediatric and Sea Port Hospitals in Port Sudan were clinically diagnosed as DHF. The mortality rate recorded was 3.8% (n=12). Of the cases 73.4% were patients 5-15 years of age. A total of 91.2% of cases were admitted during May and June 2005 with 49.4% residing in the eastern region of Port Sudan. Dengue shock syndrome was observed in 37 of 312 (11.9%). All patients had thrombocytopenia with platelets count ranged from <100, 000 to <150,000 cell/mm³. Of the 40 sera tested using RAPID-cassette test in the Khartoum Central Public Health Lab, 36 (90%) were dengue IgM positive. A subset of these sera (n=23) were sent to NAMRU-3 and confirmed by IgM-capture ELISA; 9 of 23 were PCR positive for dengue serotype 3.

Key Words: Dengue, ELISA, hemorrhagic fever, Port Sudan, shock, Sudan.

¹Department of Pediatric, Red Sea University, Port Sudan, SUDAN,

²US Naval Medical Research Unit # 3, Cairo, EGYPT,

³Central Public Health Lab, Khartoum, SUDAN,

⁴Department of Pathology, Red Sea University, Port Sudan, SUDAN.

Corresponding author: Commanding Officer, U.S. NAMRU-3, Code: 303, PSC 452 BOX5000

FPO AE09835-0007, Attn : Atef Kamel Soliman, Tel: 202-342-8505 Fax: 202-342-7121

E-mail: solimana@namru3.med.navy.mil

Running Title: Dengue outbreak in Port Sudan

Introduction

Dengue fever (DF) is the most important disease caused by the dengue (DEN) virus of family *Flaviviridae* and transmitted by the Aedes *aegypti* mosquito. Dengue virus exists as four distinct serotypes, DEN-1-4. DF, dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS) have emerged as a global public health problem in recent decades. DHF and DSS are most commonly observed in children under 15 years, but they also occur in adults¹. Infection with one serotype gives life-long immunity for that serotype but not to the others. Secondary infection with a heterologus serotype from the primary infection enhances the risk of developing DHF/DSS². DF was first reported (WHO) in Sudan, South Kordofan in 1967. DEN-2 was first reported in Port Sudan in 1989 in the Northern Province of Sudan

and the prevalence of DEN-2 antibody was 24%⁴. Additional serological evidence of DEN-2 infection in Sudan was reported 1995⁵. The aim of this study was to describe the etiology and clinical findings of dengue cases admitted to main hospitals in Port Sudan from November 2004 to June 2005.

Materials and Methods

Clinical and demographic data were collected from each child admitted to the paediatric Emergency and Red Sea Port hospitals in Port Sudan with suspected dengue infection during Nov 04 to Jun 05. Blood samples were collected for platelet count. Serum samples were tested at the Central Public Health Laboratory (CPHL) in Khartoum for DEN-IgM antibodies using RAPID-Cassette test (PanBio, Brisbane QLD, and Australia) kits. Frozen aliquots of sera were sent to NAMRU-3 for confirmation using DEN-IgM-capture-ELISA (PanBio). RNA extractions were conducted on sera using Qiagen Viral RNA Mini Kits, nested PCR amplification of the C gene ($\sim 0.3 \text{ kb}$)⁶ and direct sequencing of PCR products using the ABI 3100 genetic analyzer (Applied Biosystems).

The study protocol was approved by the Naval Medical Research Unit No. 3 Institutional Review Board (IRB # 179) in compliance with all applicable Federal regulations governing the protection of human subjects.

Results

A total of 312 patients with clinically suspected DHF were admitted to the pediatric and Red Sea Port hospitals during the study period. The majority of the patients (n= 229, 73.4%) were between 5 to 15 years of age, while the remaining (n=83, 26.6%) were below 5 years of age, 59.6% of the patients were males. Patients were predominantly (91.2%) admitted to the hospitals during the months of May and June 2005 (Fig 1), 42.4% of them were from Eastern region (close to the Red Sea port) and 32.4% (101/312) were from local tribes living in Port Sudan. The clinical manifestations of the DHF cases are summarized in Tables 1, 2, & 3.

Only 14 cases developed convulsions and 4 had cerebral hemorrhage. The mortality rate recorded was 3.8% (n=12), of which 11 (91.7%) had typical DSS. Eight of 12 mortalities (66.7%) recorded were among the 10 to15 years age group. A total 37 of 312 (11.9%) hemorrhagic cases developed DSS. Thrombocytopenia of <100,000 cell/mm³ was recorded in 75.6% of cases while 25.4% had mild thrombocytopenia (100,000 to <150, 000), 49 cases received fresh blood transfusion, 22 received plasma and platelets and 13 cases received both fresh blood and platelets. Only 40 serum samples were tested in CPHL in Khartoum due to lack of testing facilities and transportations from Port Sudan to Khartoum, of these samples 90% were dengue IgM positive by RAPID-cassette test. Of 40 serum samples 23 had enough volume for further confirmation at NAMRU-3 and all were confirmed by IgM-capture ELISA kits. Nine of 23 were PCR positive for DEN virus serotype 3.

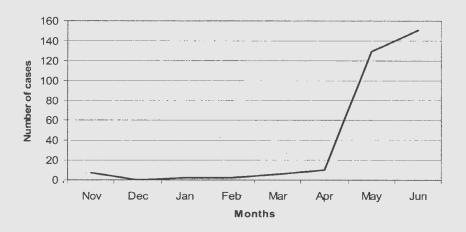


Fig. 1 Distribution of DHF cases during Nov. 2004 to June 2005

Discussion

An outbreak of a febrile disease consistent with DHF was identified in May and June of 2005 in Port Sudan. Testing of a subset of patients confirmed this outbreak to be dengue fever. Onset in May coincided with a brief rainy season⁷. No further cases were noted in July, however, much of the population of Port Sudan leave the city during July and August to escape the extreme heat.

All patients admitted had clinical picture consistent with DHF. Clinical manifestations and mortality were consistent with previously published findings⁸. In general, patients with mild disease either do not present to the hospital, or are managed as outpatients. There is very limited capacity for both inpatient care and laboratory diagnosis in Port Sudan. All patients admitted were age 15 or less. This reflects the age of the population served by the hospitals and pediatrician conducting the evaluations. No clinical information was available on disease among adults.

Demographic Data	DHF patients $n = 312$ (%)
Age (years)	and a dimensione
<1	09 (02.9)
-<5	74 (23.7)
5-<10	117 (37.5)
0-15 112 (35.9)	
Jender	
fale	186 (59.6)
emale	126 (40.0)
ace/Ethinity/Tribe	
Iadndawa	53 (17.0)
ashida	01 (00.3)
eni Amir	45 (14.4)
ritrian	02 (00.6)
Others	211 (67.6)
esidence in Port Sudan	
astern	154 (49.4)
lorthern	39 (12.5)
Central	60 (19.2)
awakin	05 (01.6)
lissing	05 (01.6)

The dengue serotype causing this outbreak was DEN-3. Although dengue fever is known to occur in Port Sudan, DEN-3 had not previously been detected. Introduction of DEN-3 helps explain the high number of cases of DHF. In November of 2004, Yemen experienced onset of an outbreak of DEN-3 that coincided with this outbreak (unpublished data). Over the past two decades, dengue virus serotype 3 (DENV-3) has caused unexpected epidemics of dengue hemorrhagic fever (DHF) in Sri Lanka, East Africa, and Latin America. The emergence of DHF in Sri Lanka in 1989 correlated with the appearance there of a new DENV-3, subtype III variant. This serotype likely spread from the Indian subcontinent into Africa in the 1980s and from Africa into Latin America in the mid-1990s⁹.

63

Clinical Data	DHF patients n= 312
(%)	There a stars. In
Bleeding manifestations	I mi al-annulli amoto
Haematamesis	115 (36.9)
Bruises at venipuncture sites	111 (35.6)
Epistaxis	108 (34.6)
Melena	102 (32.7)
Pupura	14 (04.5)
Gum bleeding	14 (04.5)
Other sites	11 (03.5)
Clinical manifestations	
Fever	312 (100.0)
Abdominal pain	163 (52.2)
Skin rash	84 (26.9)
Plethora ¹	68 (21.8)
Hepatomegaly	28 (08.9)

il patients istinitied field elimont pick

¹An excess of blood in one area of the body.

Following this outbreak in Port Sudan, cases of DHF were anecdotally reported from as far East as Kassala and Central as Kordofan (WHO). Aedes *egypti* mosquitoes have been reported from many different regions of Sudan (personal communications). Much of the population of Sudan is at risk for dengue infection. Introduction of new serotypes into the region increases the chances of the population suffering from DHF. There is a need for enhanced diagnostics and introduction of prevention measures and programs into these high risk areas.

Table3.HaemorrhagicDistribution in fatal cases	Manifestations and Age
Haemorrhageic Manifestation	DHF patients= 312 (%)
Haemorrhagic manifestation in fa	tal cases
Melena	11 (91.7)
Shock	11 (91.7)
Haematamesis	08 (66.7)
Epistaxis	02 (16.7)
Age distribution in fatal cases	(f) E onviousi autiv o
- < 5 years	01 (08.3)
- > 5 to <10 years	03 (25.0)
- >10 years to 15 years	08 (66.7)

64

ifeb.

Acknowledgment

This work was supported by MIDRP/Epidemiology funds Work Unit 6000.RAD1.A.E0403.

Authors' Disclaimer Statement:

The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government.

References

1. Gubler DJ, Reed D, Rosen L. Hitchcock JR Jr. Epidemiological, clinical and Virological observation on dengue in the Kingdom of Tonga. Am J Trop Med. Hyg 1978; 27: 581.

2 Halstead SB. Antibody, macrophages, dengue virus infection, shock, and hemorrhage: apathogenetic cascade. Rev Infect Dis 1989; Suppl 4: S830-839.

3 Hyams KC, Oldfield EC, Scott RM, Bourgeois AL, Gardiner H, Pazzaglia G, Moussa M. Saleh AS, Dawi OE, Daniell FD. Evaluation of febrile patients in Port Sudan, Sudan: isolation of dengue virus. Am J Trop Med Hyg 1986; 35: 860-865.

4.Watts DM, El-Tigani A, Botros BA, Salib AW, Olson JG, McCarthy M, Ksiazek TG.Arthropod-borne viral infections associated with a fever outbreak in theNorthern Province of Sudan. J Trop Med Hyg 1994; 97: 228-230.

5. McCarthy MC, Haberberger RL, Salib AW, Soliman AK, El-Tigani A, Khalid IO, WattsDM. Evaluation of arthropod-borne viruses and other infectious disease pathogens as the causes of febrile illnesses in the Khartoum Province of Sudan. J Med Virol 1996; 48:141-146.

6. Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 1992; 30: 545-551.

7. Jumali S, Gubler DJ, Nalim S, Eram S, Sulianti Saroso J. Epidemic dengue

hemorrhagic fever in rural Indonesia. III. Epidemiological studies. Am J Trop Med Hyg 1979; 28:717.

8. Sumarmo SPS, Wulur H., Jahja E., Gubler DJ, Suharyono W., Sorensen K. Clinical observations on virologically confirmed fatal dengue infections in Jakarta, Indonesia. Bull WHO 1983; 61: 693.

9. Messer WB, Gubler DJ, Harris E, Sivananthan K, de Silva AM. 2003. Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg Infect Dis 2003; 9: 800- 809.