A CLINICAL PROFILE OF DIPHTHERIA IN SUDANESE CHILDREN

Mustafa Abdalla M. Salih
Department of Paediatrics and Child Health, Faculty of Medicine, University of Khartoum.

In contrast to much of Africa, the Sudan stands out as a country where diphtheria constitutes a significant health problem during childhood. Although no epidemics have occurred since 1978, nevertheless many cases are still reported to Khartoum Children's Emergency Hospital (KCEH) despite the implementation of the Expanded Programme on Immunization in 1985. The target of attaining 80% coverage of vulnerable children through vaccination has not yet been reached, and so new cases are bound to happen. Since the diagnosis of diphtheria in many hospitals in the Sudan is essentially clinical—in common with other developing countries, due to lack of specific bacteriological investigations—it is therefore important for the practicing doctor to be familiar with the various clinical features and presentation of diphtheria in a vulnerable population such as the unimmunized group of Sudanese children.

It is the purpose of this review to examine the clinical features and presentation and to highlight some important points in the epidemiology of diphtheria based on observations from the 1978 outbreak. A full account of the epidemiology and complications has been reported elsewhere.

An outbreak occurred in Khartoum Province in 1978 with a peak incidence in September and October. During 3½ months, 107 children were admitted with the disease to KCEH and Khartoum Teaching Hospital. They included 48 males and 59 females, a male to female ratio of 1:1.2, which accords with the higher incidence in females reported in other studies.

The age distribution is shown in Table I. Fifty-three (49.5%) were below 6 years of age and two (1.8%) were infants. The occurrence of diphtheria ever during the neonatal period has been reported; and one of the youngest patients in the literature was a four day old infant. A peculiar phenomenon with respect to age incidence was observed during the epidemic by El Seed and others. They reported on a Sudanese woman who contracted pharyngeal diphtheria a
Mustafa A M Salih

9 weeks of gestation from her 5 year old son. A week later, she developed weakness of her neck muscles and fluid regurgitation, followed by complete paralysis of the upper and lower limbs. Pregnancy, apart from vaginal bleeding, was not interrupted and the outcome was a female baby who had a striking elevation of IgA in cord blood (0.75 gl) but remained physically normal. It was suggested by the authors that minute concentrations of the diphtheria toxin, passing the placental barrier, might possibly have stimulated a foetal immune response without causing foetal damage.

Table I: Age distribution of 107 children admitted with diphtheria

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>No (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1</td>
<td>2 (1.8)</td>
</tr>
<tr>
<td>1 - 5</td>
<td>51 (47.7)</td>
</tr>
<tr>
<td>6 - 10</td>
<td>42 (39.3)</td>
</tr>
<tr>
<td>11 - 15</td>
<td>12 (11.2)</td>
</tr>
<tr>
<td>Total</td>
<td>107 (100)</td>
</tr>
</tbody>
</table>

The immunization status of the patients was very poor with 91.6% of them unimmunized. Four patients (3.7%) were partially vaccinated and only 5 children (4.7%) had adequate immunization. On the other hand, the high incidence of the disease amongst school age children (6-15) was remarkable, constituting 50.5% of admissions. This high incidence in the school age child compared to the one to five year group has been noted in Mcleod's review and observed by Mccloskey et al during the 1970 epidemic of diphtheria in San Antonio, USA. The epidemiological implications of this are important and searches for carriers and school contacts have also confirmed the predominance of the organism in this age group. Out of 29 identified carriers, 22 (48.3%) were aged 6-15 years.

It is worth recalling that children over 6 years of age are recommended to receive the adult type of diphtheria toxoid which contains only 2Lf/units/dose to
avoid the systemic reactions which frequently result if
the toxoid intended for infants and young children (7-
25 Lf units per dose) is used. The former vaccine is
still not available in the Sudan to cover this suscept-
ible group, should another epidemic occur. Moreover, it
would also be needed for unprotected health staff, if
severe reactions were to be avoided. During an outbreak
of diphtheria in the Manchester area of the United
Kingdom (1967-1971), such severe reactions were
commonplace among adult health workers; resulting in
time off work even from 10Lf doses of diphtheria
vaccine. As a consequence, an American vaccine, which
contains 1.5 Lf doses of diphtheria toxoid (an adsorbed
combined tetalus and diphtheria toxoid for adults) was
used with negligible reactions and without the need for
prior schick testing.

In an attempt to quantify the incidence of the
disease within various socioeconomic groups, families of
children with diphtheria were divided into three
classes. Class I included parents who were businessmen,
professionals or army officers. Class II consisted of
clerks, other equivalent government employees and small
traders. Class III included farmers and workers. Althought the disease crossed social boundaries, yet more
than half of the effected children came from class III
(58.4%), followed by class II (25.7) and class I
(15.8%). This is in agreement with previous reports
that showed a higher incidence of diphtheria amongst
persons of low socioeconomic status and with limited
access to health care facilities.

The symptoms and signs of the 107 patients,
recorded at the time of initial examination are shown
in Table II. Fever was a presenting symptom in 99
patients (92.5%) followed by soreness of the throat
(82.2%) and dysphagia (defined as pain on swallowing).
Although the fever was as high as 40.2°C in some
patients yet the mean initial temperature was 38.4°C.
Such a modest rise of temperature is a well-recognised
feature of the disease. However, the occurrence
of dysphagia in diphtheria has been refuted in some
writings and confirmed in others. The time-
honoured observation of an increase in pulse rate to a
degree which is out of proportion to that of tempera-
ture elevation, has also been noticed in this series
with a mean initial pulse rate of 115/min.
Oedema of the neck was a common sign, affecting 56 patients (52.3%). It was non-pitting, warm to touch and tender to palpation in the majority of cases (46.7%). Characteristically, it extended between the mandible and the anterior sternomastoid border either on one side (19.6%) or bilaterally (23.4%). The 'bull neck' appearance—where the swelling formed a distinct collar, reaching from ear to ear and filling out the whole space beneath the jaw—occurred in 7 cases only (6.5%). Cervical oedema confined to the submental region was seen in 3 patients being associated with diphtheria membranes on the floor of the mouth, without the involvement of the nose or throat. However, in 51 patients (47.7%) no neck oedema was evident.

A diphtheritic membrane could be observed in 104 patients (Table III).

Table II: Symptoms and signs of diphtheria in 107 children

<table>
<thead>
<tr>
<th>Symptom or sign</th>
<th>No (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fever</td>
<td>99 (92.5)</td>
</tr>
<tr>
<td>2. Sore throat</td>
<td>88 (82.2)</td>
</tr>
<tr>
<td>3. Diphagia</td>
<td>69 (64.5)</td>
</tr>
<tr>
<td>4. Oedema of neck</td>
<td>56 (52.3)</td>
</tr>
<tr>
<td>5. Neck tenderness</td>
<td>50 (46.7)</td>
</tr>
<tr>
<td>6. Nausea, vomiting or both</td>
<td>48 (44.9)</td>
</tr>
<tr>
<td>7. Headache</td>
<td>46 (43.0)</td>
</tr>
<tr>
<td>8. Chills</td>
<td>34 (31.8)</td>
</tr>
<tr>
<td>9. Nasal discharge</td>
<td>34 (31.8)</td>
</tr>
<tr>
<td>10. Earache</td>
<td>14 (13.1)</td>
</tr>
<tr>
<td>11. Cough</td>
<td>14 (13.1)</td>
</tr>
<tr>
<td>12. Stridor</td>
<td>7 (6.5)</td>
</tr>
<tr>
<td>13. Grunting</td>
<td>5 (4.7)</td>
</tr>
</tbody>
</table>

It was usually grey in colour; but pale yellow and dirty white membranes were also seen. Occasionally the membrane was dark and almost black in colour if there had been an effusion of blood. It was usually firmly
A clinical profile of diphtheria 35

adherent leaving a raw-looking surface which bled when attempts were made to detach it. Although it dominantly involved one or both tonsils, it was frequently found, on close examination, to cross the boundaries of the tonsils to anterior and poslerior pillars, the soft palate and uvula and the posterior pharyngeal wall being surrounded by an area of deep congestion. Examination of the throat also revealed a distinct offensive odour which has been described in some reviews to be 'more or less characteristic' 17. This appearance of the membrane was not affected by prior administration of antibiotics 14. Indeed, 40.2 of the 107 children with typical clinical features had already been on antibiotics, when reporting to hospital. However, previous immunization of the patients was reported to affect the characteristic of the membrane. It becomes less confluent, more easily removed, more follicular and rarely spreading to involve the pillars or soft palate 19. On the other hand, primary nasal diphtheria was found in 4 patients (3.7%); the figures in the literature ranging between 0.7-6.4% 20,21; Nasal diphtheria is frequently a secondary upward extension from the fauces or pharynx and in such cases the membrane might not be visible in the anterior nares.

Table III: Diphtheritic membrane in 107 patients: Occurrence and site

<table>
<thead>
<tr>
<th></th>
<th>No (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No membrane</td>
<td>3 (2.8)</td>
</tr>
<tr>
<td>Membrane:</td>
<td></td>
</tr>
<tr>
<td>in both tonsils</td>
<td>49 (45.8)</td>
</tr>
<tr>
<td>confined to one tonsil</td>
<td>28 (26.2)</td>
</tr>
<tr>
<td>tonsillopharyngeal</td>
<td>19 (17.8)</td>
</tr>
<tr>
<td>nasal</td>
<td>4 (3.7)</td>
</tr>
<tr>
<td>in the floor of the mouth</td>
<td>3 (2.8)</td>
</tr>
<tr>
<td>laryngeal</td>
<td>1 (0.9)</td>
</tr>
</tbody>
</table>
More commonly, it presents with a clear discharge that becomes purulent and may be associated with epistaxis. Four patients (2.8%) presented with diphtheritic membrane in the floor of the mouth, associated in one of them with a creamy-whitish membrane that covered the inferior surface of the tongue. One patient (aged 9 years) died of primary laryngeal diphtheria. A higher incidence and case fatality rates of laryngeal diphtheria has been reported in patients under 10 years of age.

Other forms of the disease were not observed in this epidemic. However, such lesions are well-documented in the literature. They include cutaneous diphtheria which is thought to induce active immunity in African countries, accounting for the low incidence of respiratory diphtheria. Other sites which have been reported to be involved are the umbilicus, ear, conjunctiva, vagina and cervix, prepuce, buccal mucus membrane, oesophagus, stomach, anal region and various sites in the body where there have been pre-existing wounds. These lesions are sometimes primary but more often result from secondary infections of the nose or throat.

REFERENCES